

Alternative Testing Tools in Action

Alan Richardson,
Compendium Developments,
 www.compendiumdev.co.uk

A test tool is ANY tool that can aid the tester during the testing process.

There are hundreds of tools out there that are currently outside the mainstream definition of a 'test tool', many are
inexpensive and some are completely free. This paper will describe some alternative tools in action on actual test
execution sessions, and the thought processes I went through to identify them. I recommend that you conduct such an
activity for yourself. Identify the alternative tools that you take for granted, identify keywords for them and the tool
classes they fit in to. Then find some alternatives and improve your personal test process.

Alternative Testing Tools In Action
‘Then I stopped the machine, and saw
about me again the old familiar
laboratory, my tools, my appliances just as
I had left them.”

H.G. Wells,
The Time Machine.
1 www.compendiumdev.co.uk

http://www.compendiumdev.co.uk/

The Practical Part – The sessions & the tools
This section represents notes on the test sessions that were recorded to demonstrate the tools in action. Any tool
mentioned by name here, will have an entry in the tools appendix later on, with a listing of its url to allow you to
download it..

The sessions and parts are all viewable as swf files during the presentation or on the web site
www.compendiumdev.co.uk/toolsinaction

 The sessions act as a microcosm, a reflection of a larger testing process.

1. Install the JBSessions Application – sessions 01 – 03
2. Exploratory System Testing 04 - 07
3. Test Management and Integration Testing – sessions 08 – 10

None of the tools used here were chosen to pad out the paper. All of the tools are tools are normally part of my personal
test process with the exception of the Microsoft Compatability Toolkit, R and the KeyLogger. All exceptions have been
on my list of possible tools for some time, but this paper represents my first use of them as this was the first project that
seemed appropriate to try them on.

The Microsoft Compatability Toolkit is now a very definite part of my test process as it provides a great deal of insight
into the application under test. R is a tool that I see enormous possibilities for and am currently learning it in more
depth. Keyloggers look like a technology that I will watch and will use on applicable future projects.

As my personal test process involves identifying new tools to help me with my testing when the need arises, I
make no applogies for using some of these tools for the first time. That is all part of identifying Alternative Test Tools
and using them in your test process.

Notes on the Application under test
The application I chose to test for the purposes of this paper is one that I wrote several years ago. A Visual Basic front
end for James and Jonathan Bachs’ Session Based Testing Perl scripts. It was originally written to experiment with
some Visual Basic code and some GUI techniques.

I don’t actually remember much about the development of it or the details of the code. It has not been used extensively
and it has no supporting documentation. As the developer I vaguely remember thinking it was ready for release even
though I hadn’t tested it. I did build a setup install routine for it and I have some old test data files in the development
directory. The application should run under Windows 9X, NT4.X, 2K, XP

The application was built to be useful in session based testing, to explore and experiment with a number of GUI
techniques, and to give me more practise in writing Visual Basic code.

From the above description we can begin thinking about our situation. There are likely to be some fairly basic defects
present, because of the need to practise and the lack of unit/developer testing. Documenation will not be available to
guide or test derivation or act as an oracle, but we can use the Back Session Based Testing scripts to validate our files
and check basic consistency. We are likely to find errors in the system and the integration.

Alternative Testing Tools In Action 2 www.compendiumdev.co.uk

http://www.compendiumdev.co.uk/toolsinaction

Objections to this choice as an objective method of exploring test tool identification strategies might be:
• “You know where the defects are so it doesn’t act as a good testing demo”

o I don’t know where the defects are, I wrote it > 2 years ago, and although I have a setup routine, I’m
not even sure I finished it.

o The demo isn’t about my testing skill it is about the tools that you use to test, and the thought
processes involved in choosing them

• “You will pick tools that are appropriate to the AUT, not just useful tools”
o The tools we use should be based on the needs of testing the AUT so that is an appropriate thing to do
o And I will explain the reasons for choosing those tools

• “You will only be looking at a subset of tools rather than giving me a large list of tools.”
o Yes, that is true. There are plenty of long lists of tools available on the internet. I would rather look at

a few tools in detail and show them working on a real testing session to give you an idea of their
capabilities. You might be surprised at just how many tools I do cover in this paper.

Alternative Testing Tools In Action 3 www.compendiumdev.co.uk

 Approaching the testing and identifying the tools

The context I will be working with:

• Operating System I’m using,
• Architecture of the system,
• Process I am using
• TimeScales I am testing against
• Environments I have available

Operating
System

System
Architecture

Test
Process

Environments

Timescales

File Monitor
Process Monitor
Registry Monitor

Microsoft Compatibility Toolkit
SnagIt
ClipMate

Install
Routine

InstallRite
InCtrl5

Interfaces
Bach Session Based
Testing Scripts

Perl

Files

Backups
Second Copy

SmartSync Pro

Searching
Grep

PowerGrep
Agent Ransack

Renaming The Rename

File
Management A43

Locking 'more'

Comparison
WinMerge

Beyond Compare

ArchivingPicoZip

Version ControlKeep It

Raising Defects

Screenshot Tools
System Info
Tools (Aida32)
Movie Capture
(Camtasia)

Track Defects
BugZilla
MS Excel
Compendium-TA

Metrics
MS Excel

R Statistical Analysis

Exploratory KeyLoggers

Clean Machine
Virtual PC
Burn4Free

Short
No Automation of playback

Tools that I know are helpful
on that operating system

System is file based
so I'm thinking of file
manipulation tools

I want to check out
the installer for possible
issues

these are mandatory
to do integration testing

I’ve marked the tools I want to investigate with a ?

TimeScales & Environments
I am not going to be testing for very long, a couple of days maximum, and I won’t be leaving a legacy of tests for
others to execute, and I will probably be testing in an exploratory fashion so I won’t be using any traditional
automation tools.

I’m going to install on a clean machine if it looks like the setup routine might damage my main setup in which case I’ll
use a PC emulator and monitor the install routine.

 Install the application
It took longer than I expected to install the application, but as testers we are used to the initial environment setup not
going according to plan. A result of this is that I have become aware of a number of tools that can help me through the
process of installing applications and making sure that nothing untoward is done to my main operating environment.

Alternative Testing Tools In Action 4 www.compendiumdev.co.uk

Session 01 – Cancel Install App Session

Aim: Install
application

notice it is a VB
Install Wizard

setup

Installation Stops

Setup

Cancel Setup

The first thing to do is to install the application from the existing
setup.exe. When the setup started, it was obvious that it had been built
using the VB Setup Wizard. In inexperienced hands this can generate
very damaging setups. So I will not install it on my main environment
until I have determined that the install can do no damage. I need a way
of isolating the install from my main environment just in case there
is a problem. PC Emulators are great for this so we will use Virtual
PC. www.microsoft.com/windowsxp/virtualpc

Welcome to DLL Hell
Visual Basic programs require a
number of dlls to be installed in order
to function correctly. The VB Install
wizard has been known to gather those
DLLs from the developer’s system
directory and install them on to the
user’s system without checking the
version numbers of the existing files
and can overwrite more recent
versions of the file. Causing instability
and crashes in the user’s PC.

Virtual PC allows us to create a PC within a PC so I can effectively run
multiple Operating Systems on the same computer, each with their own
isolated hard drives (virtual). Other PC Emulators exist, the freeware
Bochs (bochs.sourceforge.net), which can be a little hard to setup, and
VM Ware (www.vmware.com), a commercial tool that has the ability
to create snapshots of a running operating system at any time.

The instant lesson from this session is that our primary test tools (Brain and senses) have to be engaged from the
very instance that we approach testing.

Session 02 – Install App Session

Aim: Install
app into
Virtual PC

Burn4FreeCreate ISO

Virtual PC

run NT 4.0

will not
install on

NT 4.0
install

SnagIt

capture error msg

ClipMatecapture to clipboard

Not
Installed

turn off & undo

When installing applications on to Virtual PC, I build virtual CDs to instal
get files into the emulated environment without compromising my main en
the Virtual PC access to the network. I allow the Virtual PC to do this once

Alternative Testing Tools In Action 5
“The expectations of life depend
upon diligence; the mechanic that
would perfect his work must first
sharpen his tools.”

Confucius
“You should not have a favourite weapon. To
become over-familiar with one weapon is as
much a fault as not knowing it sufficiently well.
You should not copy others, but use weapons
which you can handle properly. It is bad for
commanders and troops to have likes and
dislikes. These are things you must learn
thoroughly.”

Miyamoto Musashi,
A book of Five Rings

 (the ground book)
l from as this allows an easy mechanism to
vironment by sharing directories or allowing
 I am certain that no damage can occur.

www.compendiumdev.co.uk

http://www.microsoft.com/windowsxp/virtualpc
http://bochs.sourceforge.net/
http://www.vmware.com/

I create an iso file (CD image) using Burn4Free (www.burn4free.com). I then attempt to install the application under
NT 4.0. I tend to use NT4.x when testing install routines as this operating system series gives the most obvious
response to incorrect system files with a blue screen of death.

When installing on NT 4.0 the setup routine reports an error, it is incompatible with NT 4.0. This might be reason alone
for finding a new install generation package. But it provides us with our first bug. So SnagIt (www.techsmith.com) is
used to take a snapshot of the error message and this is sent directly into the clipboard which is being cached by
ClipMate (www.thornsoft.com).

Burn4Free Virtual PC SnagIt ClipMate

Burn4Free is a free tool for the manipulation of CD images, I use it because it is a quick and easy way to create iso
images which can be mounted in Virtual PC as CD roms and are a great way to get software on to the Virtual PC.

SnagIt is the snapshot creator I use, it is a commercial product, but is cheap and does the job better than any other tool
that I have used. The functionality it provides is far beyond the simple capturing of a screen and is well worth
evaluating. In this section we have just used the simple “Capture a Region” functionality. I have SnagIt running all the
time on my machine, just in case I need to record a picture of a defect.

ClipMate is a clipboard manager, and is another tool that I have running all the time. All the entries that go to the
clipboard are captured by clipmate (although it can be configured to ignore certain tools) and stored in a database.
Clipmate allows you to view the items and edit them before repasting. Every entry is given a timestamp so I can see
exactly when the information was added.

I have SnagIt and ClipMate setup to work together, so that SnagIt saves all its screencaptures directly to the clipboard,
where I can then come back to them at a later date when writing the defect report. This saves me having to store the
pictures in files, and fiddle about with defect trackers at the same time as observing the faults and basically makes my
life easier.

Session 03 – Install App into NT 4.4

Aim: Install app
into NT4.4

running NT4.4
on Virtual PCchange hard drive image

setup.lst
missingrun install

create new ISO,
add installRite

and fileMon

SnagIt error msg

monitor install installRite on Virtual PC
Run App under

FileMon view reports

investigate
missing files

missing paths.txt and testers.txt

installrite still
installedturn off & keep changes

Swapping over to a new operating system in Virtual PC is as simple as pointing the system at a new virtual hard drive
(VHD) where the operating system is installed. The use VHDs makes backing up these environments very simple, but
Virtual PC provides us with a facility to have any changes we make to the VHD stored to an undo file, which means
that we can keep our VHD in a clean state even though we have installed applications to it. The undo file can be
merged into the VHD, deleted or kept separate.

Alternative Testing Tools In Action 6 www.compendiumdev.co.uk

http://www.burn4free.com/
http://www.techsmith.com/
http://www.thornsoft.com/

With NT4.4 running in Virtual PC, the install proceeds but I discover that a file “setup.lst” is missing from the CD
image. I take a snapshot of the error message in case I need to raise a defect later and then go and investigate the error.
It turns out that it was a tester error when creating the iso file as I just didn’t realise the significance of the file. This
could be another point in favour of using a different setup tool so I make a note down to add that information to the
defect report.

As I have to create a new CD image, I will add on 2 diagnostic tools which can help me monitor the install and initial
run of the tool. These are InstallRite (www.epsilonsquared.com) and FileMon (www.sysinternals.com).

 InstallRite FileMon

InstallRite is an install monitoring utility which takes a snapshot of the state of your machine before you install, runs
the install and then takes a second snapshot and reports on the differences. InstallRite happily copes with setup routines
which cause a machine reboot, which is the case with our install routine as it is replacing some system files. This can be
dangerous so we will examine the install report carefully and add the details to our defect report. To investigate some
of the files reported by install rite I use the “dll help database” from Microsoft. Do a Google search to get the up to date
link as it has a tendency to move.

With the application installed. I will run FileMon and then run the application. FileMon hooks into the OS and reports
any file system events. In our case it reveals that the application is looking for two files that it could not find “paths.txt”
and “testers.txt”. This gives us more information about the application and we can approach the developer with very
specifc questions.

How to look like a technical wizard when speaking to developers and raising defects
Many of the tools in this paper come under a general category of Monitoring tools. In the paper we monitor file
system usage, registry access, install programs. But there are tools available to monitor system messages passed to
dialogs and forms, debug messages, memory accessing, processes, file dependencies. All of these tools can provide
you with a great deal of technical information that can help you communicate effectively with developers and gain
insight into the AUT. Without having to add diagnostic code into the system. All you have to do is learn how to
use the tools and read the reports.

Using FileMon as an example, I was able to tell a developer exactly which dll was being accessed when the AUT
crashed. This aided his debugging, made it easier to recreate the fault, and made me appear technically brilliant.

What we learned about the AUT in session One (Parts 1-3):
1. The installer is the default Visual Basic Package Wizard. And that is a common source of “DLL Hell” errors. So

we should initally test it in a controlled environment.
2. Our installer does not work on NT 4.0, this may or may not be a problem, but it may mean that the installer is also

incompatible with other operating systems that we haven’t tested on and we should probably find a new installer.
3. The installer may be overwriting system files that it has no business updating, we should raise this as a potential

issue with the developers, but it will probably resolve itself when we change the install generator. I initially test
against NT in Virtual PC, as NT often blue screens when you mess up the install routine.

4. There is no file called “paths.txt” and there is no file called “testers.txt”. This may be why the testers drop down is
empty and the save function defaults to “program files” directory. We should probably ship default files with the
application or have them automatically generated – check with the developer.

All of the above is enough to enable us to go back to the developers and ask for more information about the system. To
push for a new build of the software that is easy for us to install and to get the developer to do some testing of their own

Alternative Testing Tools In Action 7 www.compendiumdev.co.uk

http://www.epsilonsquared.com/
http://www.sysinternals.com/

on the install routine. The developer needs to take more control over the install process because I guarantee that
somewhere down the line it is going to cause trouble if they don’t

Section Two – Now some proper testing (sessions)
While we wait for the developer to build us a proper setup, we have been given a “paths.txt” file and a “testers.txt” file
by the developer and we can run the application .exe without an install routine (because we have all the relevant dlls
and libraries already installed on our machine).

We will do a little bit of system testing until the install
routine is ready.

I know that the application creates files that are for use with
the Bach Session Based Testing Scripts, so I will be
conducting some integration testing, but I’m first going to
run the application in a System Testing mode, creating and
saving files and examining the content of those files.

Session 04 – Investigate Startup Routi

Aim: Explore
App startup

routine

Microsof
Windows

Applicatio
Compatibi

Toolkit

ready to monitor

inves
regis

Because I don’t know much about how the application does wh
me visiblity into the behind the scenes operation of the system.
Toolkit (www.microsoft.com/windows/appcompatibility/toolk
may alert me to actions the system is doing that aren’t particula

The Application Verifier tool, reported a few items during the s
risky is a non-standard write to the registry. I will investigate b
www.sysinternals.com.

In this case the warning turns out to be a false alarm, as it was V
added to the application, but it was worth following up on as th
we can invesigate and target with our testing. I’ll leave the com
periodically review the logs.

 Application Verifier

Application Verifier runs in the background and monitors runn
non-standard usage or usage that might cause compatibility pro

Alternative Testing Tools In Action 8
“My tools are but common ones,
Simple shepherds all—
My tools are no sight to see:
A little hempen string, and a post whereon to swing,
Are implements enough for me!”

Thomas Hardy,
Wessex Poems and Other Verses. 1898.
ne

t

n
lity

investigate
compatibility

warnings
run app

tigate
try calls

run regMon

at it does, I’m going to use a monitor tool that will give
 The Microsoft Windows Application Compatibility
it.mspx), specifically the Application Verifier tool, this
rly healthy.

ystem startup, but the only one that looked potentially
y using the registry monitor from

B that was accessing the registry, not VB code that we
ese monitor tools can identify potential problems that
patibility toolkit running as I test the application and

Registry Monitor

ing processes use of the Windows API. It can report on
blems on operating system.

www.compendiumdev.co.uk

http://www.microsoft.com/windows/appcompatibility/toolkit.mspx
http://www.sysinternals.com/

Registry Monitor monitors changes and accessing made to the windows Registry, this can help identify missing, or
misuse of, registry entries by the application. The output can be filtered so that you only see the results for the
application under test.

Session 05 – File Locking

Aim: Save
Locked File

create a filerun & verify
edit config

filesA43

lock file with
'more'

save file

app gives
incorrect error

message
save filesave OK unlock file

Because I know that the application uses text files, I’m going to see how it copes with locked files during a write. And
for that I’ll use ‘more’, the old dos application. This has the side-effect that viewed files are locked from writing by
other processes.

I’m simply going to create a new file, save it, lock the file with ‘more’, change some details and try and save it again.
To aid me in this I’m going to run the application through A43 (www.shawneelink.net/~bgmiller) which is a 2 Pane
Explorer substitute with a built in text editor and easy access to the dos prompt.

 more A43

I
d
y
th
ca
al
m
u
se
lo
w
re

O
th
su

At my first fun of the application, I discover that
the developer’s paths.txt details don’t match up
with mine so I have to edit them, but that doesn’t
take much time since I have a text editor built
into my file explorer, and it allows me to copy
the full path name of a file which makes it easy
to amend the details. Environment teething
problems are a common occurrence in software
testing and I like to have simple tools available
that can help me do what I need to resolve the
errors quickly.

To run ‘more’, I call up the dos prompt from the
tools menu in A43, I can also copy in the name
of the test file to the dos prompt so that the
process is very fast.

The application reports an error when writing to
the locked file, which is misleading as it states

Alternative Testing Tools In Action 9
ActiveWords case study (A side note on time saving)

use a little tool called ActiveWords: a very flexibly user-
efinable command driven macro system. To use it you type
our commands in any document or press control+space and
en type a command in to the command line. ActiveWords
n be a hard tool to explain or justify why it is useful. After
l, anyone can open an Internet site by going to the start
enu, clicking on explorer and typing in the address. The

se of ActiveWords is a timesaving of about 10 or 20
conds. Everytime you use ActiveWords it calculates how
ng the task would have taken to do manually compared
ith how long it took for ActiveWords to do it and stores the
sults.

ver an extended period of time, the metrics documenting
e timesavings associated with these alternative tools can be
rprising.
www.compendiumdev.co.uk

http://www.shawneelink.net/~bgmiller

that data ‘might’ not have been completely written to the file, when in fact no data was written to the file, so I’ll report
that to the developer. But at least we didn’t get a crash.

When I view the Application Verifier logs it reported a possible incorrect use of ‘My Documents’ because we saved a
file into this sub directory path but didn’t use an API call to get the information. So Application Verifier warned us
about a possible hardcoded path.

In this case that wasn’t a problem, but it is useful to know that Application Verifier can tell us about these events as
they are a common source of errors.

The point of this session is not the test, but that test tools come from the most unlikely sources. We are using a side
effect of the ‘more’ command as a test tool for locking files. James Bach mentions the side effect of placing a radio
next to a computer, to hear the computer processing, as a test tool in ‘Boost your Testing Superpowers’
(www.satisfice.com/articles/boost.htm).

As testers we are used to looking for side effects, they are often a source of bugs, in this case we are looking for side-
effects that might turn any normal piece of software into a test tool. Our normal testing thought processes can help
us identify test tools.

Although it could be argued that A43 isn’t a test tool at all, the fact that it saved me time, because I was able to edit the
files, call up dos and run the ‘more’ command so easily, means that it made my testing more efficient, and as far as I’m
concerned that makes it a useful test tool.

There are alternatives to using A43 as there are many extensions to explorer that allow ‘dos prompt here’ in the context
menu and ‘copy name’ ‘copy path’ functionality, these are often operating system specific and require an install. A43
runs on multiple operating systems and does not require an install so I can easily take it to client sites.

A Simple Persistent Test Log For Exploratory Testers

Use a clipboard manager as a test log. Here is what I do (with SnagIt and ClipMate):

• Type some text describing something I’m about to do or thinking about,
• I don’t have to open a text editor, this can be done anwhere I can type,
• Highlight the text and cut it into the clipboard, leaving your typing area clean of your thoughts,
• This instantly persists it in your clipboard database with a handy timestamp,
• Then go about your testing,
• Occasionally take a screenshot that you send to the clipboard.

A robust and pretty crashproof exploratory test log. I’ve lost too many test logs in the past due to machine crash es
not to like this method. Of course you are still vulnerable to hard drive trashing crashes, so if you experience those
often, I recommend the use of a ULTT and digital camera.

Part Three – Exploring

I’m going to explore the system for a while and see what occurs to me, so I’m going to have a keyLogger running in
the background, this will capture all the keys that I press and take a screenshot every 6 seconds.

I’m also going to have SnagIt, ClipMate, and Application Verifier running in the background just in case.

Alternative Testing Tools In Action 10 www.compendiumdev.co.uk

http://www.satisfice.com/articles/boost.htm

Session 06 – Explore Area of Greatest Complexity

Aim: explore area
of greatest
complexity

scan GUI for
complexity

Keylogger Run & Verifymonitor

test task
breakdown

sketch test

rerun using
SnagIt &

ClipMate as a
log

test failsreview keylog record log in word

I run the application and scan the GUI looking for areas of complexity. The name drop down looks like it might
influence the initials, which might also influence the filename so I’ll test that later. The Issues, and Bugs lists have
some with two ways of creating each entity, so that will have to be tested.

As I observe the operation of the system I see that when I open a dialog area and close it, the system fills in summary
details of the areas contents in the title, these details should probably be prefilled in. I’ll make a note in my ULTT
(ultimate lo-tech test tool – that’s called a spiral bound notebook to non-testers, but we know better) test log about the
issue and use the snapshots taken by the keylogger to raise a defect showing those two states later.

But by far the most complex area is the Task Breakdown section. We have a whole bunch of sliders and integer fields,
and some of the integer fields have connections to each other so that when one changes the others change to make the
totals always add up to 100. This looks like a bug minefield, and I’ll focus on this first.

I make a few notes using my ULTT to model the relationships between the integer fields and design a quick test, and
sure enough there is a defect. In the above screenshot when the enter key is pressed the expected values are 67, 0, 33
but the actual result is 100, 0, 0.

I get ready to repeat the test so that I can raise it as a defect, and this is where a combination of alternative tools really
helps me out. I already have my notes in my ULTT so I can repeat the test at a later date.

But I may as well repeat the test and log all the details into the clipboard manager and use this as an exploratory test log
and later paste the details into a defect report. I type in my test details into the edit pane in A43, copy those into the
clipboard, and take a screenshot of each of the three steps of the test into the clipboard as well. These can then be
pasted into a defect report later on.

Alternative Testing Tools In Action 11 www.compendiumdev.co.uk

I’m going to document the defect reports in a word processor as this is an internal project and the use of the clipboard
utility makes it easy to get the information out of the clipboard with a PowerPaste function, which basically means that
I select the test description text details, set it to Powerpaste Up then ctrl+V 4 times in my word processor and my defect
report is automatically populated from my test log.

Key Loggers are an interesting technolo
This can make them a useful source of
If we forget to take a snapshot of an err
of the test session when we come to rai
automated one. Loggers should not be t
aims and motivations.

You might want to start with these thre
(webattack.com/get/abckeylog.html), P

Session 07 – Simple environm
Because I’m going to be doing exploratory
able to restore the local environment back t
the directory and I’ll have the directories au
SmartSync Pro to do both of these tasks.

One the environment is safe, I am going to
compare it with its original.

Aim: setup
automatic local
env backups,
test file saving

de

on change, a

ActiveWor

WinMerge to
compare files

test file save

inconsis

Alternative Testing Tools In Action
Some thoughts on keyloggers

gy. Recording keypresses and screenshots of everything that you do.
reflection when we have finished testing, and act as a secondary test log.
or dialog, or note down the test data we used, we can retrieve it at the end
se our defects. We can also double check our manual test log against the
he only way that you track your sessions as they don’t document your

e: spector $99 (spectorsoft.com) , abckeylogger Free
AL $35 (palsol.com)
ent management & File Compare Testing
testing I’m not sure exactly what changes I’m going to make so I want to be
o any previous setup. I will make deliberate backups of the relevant parts of
tomatically incrementally backup whenever anything changes. I can use

check that file saving is consistent, so I’ll save a file to a different name and

SmartSync
Prouto incremental backup

check backup with
BeyondCompare

backup env

ds quickly jump to env

file compare with
BeyondComparetency beyondComparerestore env

12 www.compendiumdev.co.uk

http://spectorsoft.com/
http://www.webattack.com/get/abckeylog.html

I use ActiveWords as one way of navigating around my system and executing programs. Much of the time I find it
faster to type a command than to reach for the mouse, and click on a shortcut or use windows explorer. Consequently
I’m going to setup a couple of ActiveWords to move me around the different directories involved in testing this tool.

As a tester I am particularly paranoid about software errors damaging data so backups are particularly important to my
test process. For this set of testing I am going to setup SmartSync Pro to backup my test environments. This will be
done in two ways. A Manual backup that will directly copy the environment and an automated backup that will create
an incremental backup anytime that a file in the test environment changes.

After I have setup the manual backup I will compare the directory structures with Beyond Compare, this is a diff
utility that I use for comparing files and directories. I also use WinMerge as a second opinion on file compares.

I test my automated setup by editing a file in my test environment, it is backed up automatically and I restore the
environment from the direct copy using Beyond Compare. This gives me a visual check of all the items that have
changed.

ActiveWords SmartSync Beyond Compare WinMerge

Environment maintenance has been an essential part of every testing project that I have been on and before testing
starts I like to become familiar with the environment and tools available to help me backup/restore, integrity check and
monitor my environment.

Session 08 - Install Session Based Testing Scripts

Aim: Setup
integration

testing
environment

Install PerlActiveState.com

Install Session
Based Testing

Scripts
satisfice.com

check
demonstration

install

ActiveWords to run scripts

Because the AUT is an editor for the session files that feed into the Perl Session Based Testing Scripts, by James and
Jonathan Bach, I need to have both Perl and the scripts installed and working.

Perl is a programming language that can be tricky to master, although simple file based operations can be remarkable
simple to carry out with a good reference manual in front of you. Perl is a wonderful tool for testers if it is available and
you find the time to learn the basic operations. And an Installation of Perl gives us access to other test tools.

Session based testing is usually presented as a way of managing exploratory testing. Although it can be incorporated
into a less exploratory testing approach quite easily as sessions are simply a way of chunking your testing time and
tasks into easily managed and reported sessions. Session based testing is a useful management technique to become
familiar with as it makes the distinction between testing time (time on charter) and time spent off charter (investigating
defects and resolving environment problems). This can provide an extra level of insight into your test process as there

Alternative Testing Tools In Action 13 www.compendiumdev.co.uk

are times with it seems that although we work hard we make little progress into our desired coverage scope. If much of
your effort is actually off charter then this might be highlighted using session based test management.

The Session Based scripts provide a set of metrics and charts for helping to think through your elapsed testing effort.

I find the techniques of session based testing to be of considerable value to my personal test process and development
efforts.

A robust and professional Perl is freely available from www.ActiveState.com, the quality of this version of perl is such
that I have no qualms installing this on client machines when permitted.

Once both Perl and the scripts are installed, I setup the main submit script to be run with ActiveWords and run the
scripts on the sample files to make sure the install is correct.

Session 09 – Initial Integration Testing
The intial integration testing is going to be done by simply running some of our generated files through the Session
Based Testing scripts to inform us of any obvious errors in the tool.

Aim: quick
integration test

setup
smartSync to

integrate
systems

configure scripts
submit our

datacreate sessions in tool

fix in A43

errors identified

view reports submit successfully

SmartSync is going to be used to move our generated session files across to the Scripts directory. This is just a simple
way of automating some of the manual admistrative tasks involved in using the Perl scripts.

A few simple test sessions are going to be written to cover the testing we have alread done. These will be passed
through the Session Based Testing scripts to see the results.

I have already setup an ActiveWord to syntax check and approve the session based scripts. So this aspect of the using
the scripts is already automated for us.

The simplest of integration testing – just using the two pieces of software together has identified a number of errors in
our Application under test.

o Dates inconsistent in file and with name
o Data files have full path

I fix the session files using the text editor built into A43, making notes on the defects to raise them with the developer,
and when they do submit, I can view the metrics on my current sessions to date.

Session 10 – Manage Defects and Metric Reporting

Aim: Track the
defects and

generate
metrics

raise defects
from SBT logssetup Compendium-TA Process in Rextract to CSV

Alternative Testing Tools In Action 14 www.compendiumdev.co.uk

http://www.activestate.com/

The sessions for the Session Based testing scripts allow me to document the bugs and issues that I identify but the
actual tracking and management of these entities is outside of the scope of the scripts so I need to add some form of
defect management process to my testing.

I could do this in MS Excel or, now that Perl is installed, could setup Bugzilla for the task. But for inhouse and presonal
test projects, I track defects and test designs in Compendium-TA (www.compendiumdev.co.uk/compendium-ta). By
creating a user-defined entity called Defect I can comfortably track the defects and later cross-reference them with any
new system requirements and test designs.

For statistical analysis of the defects I will export the defects into a csv file and process them using R and the R
frontend SciViews.

Session Based Testing Scripts Compendium-TA R & SciViews

R is a free cross platform statistical analysis environment and language that allows me to do very quick and easy
exploration of the raw defect information. I can also build larger scripts that will export all the exploration out as a
report.

For example, once I have exported my defects from Compendium-TA into CSV

=>

 I can load that into R:
> Dataset <- read.table("C:/sessions/compendium-ta/bugsextract.csv", header=TRUE, sep=",",
na.strings="NA", strip.white=TRUE)
> attach(Dataset)

And begin to explore the information:
> names(Dataset)
 [1] "ID" "Name" "Desc"
 [4] "GUID" "sessionName" "Status"
 [7] "Criticality" "RaisedDate" "ClosedDate"
[10] "ResolutionDetails"
> table(Status,Criticality)
 Criticality
Status High Medium
 Open 6 2

I can easily view the information graphically:
> plot(Criticality ~ RaisedDate)

Alternative Testing Tools In Action 15 www.compendiumdev.co.uk

http://www.compendiumdev.co.uk/compendium-ta

A few simple commands in R can replicate a lot of effort that I would normally do in Excel.

R can also be used for data generation.

I have used MS Excel on every single test project I have ever worked on to:

• track testing,
• report on test progress,
• track defects,
• calculate metrics,
• generate or document test data,
• augment big name commercial test tools

And I have built a lot of very complicated spreadsheets, most with Visual Basic macros..

The few disadvantages that I have found using Excel are that:

• I sometimes have problems taking spreadsheets from client site to client site because of the variety of different
versions of Excel that I encounter

• while some people find it very easy to navigate, others prefer a word processor report or html file,
• the data and presentation layers are so tightly woven in an excel spreadsheet that making changes can become

problematic.

Having done so much in Excel and knowing how much time and effort I have put in to various spreadsheets, the ease
with which I replicated simple metrics and graphs in R makes R and attractive technology to continue to learn.

By starting to use R, I resolve the presentation issues by automatically generating standard sets of metrics but retaining
the ability to explore the dataset dynamically for myself. I also make my data analysis more portable and less reliant on
the client site technology. I also found it far simpler to learn to use R to generate graphs than I did when learning that
functionality in Excel initially.

I will undoubtedly still use Excel for metrics reporting and analysis. But I will continue to learn R as an alternative for
those projects where it is a better fit.

Future Sessions - Getting Advanced and other out of scope stuff
This is where the test sessions for the paper stop.

Over the course of a couple of hours or testing and environment setup. I have used over 20 tools, some for the first time
(where they made a valuable contribution), and others that I was more familiar with. And although not much ‘testing’
has been done. All the activities carried out have been testing activities, and all the tools used have aided those
activities. Some of the defects identified would not have been found so quickly into the test process had it not been for
the use of some of those tools.

Alternative Testing Tools In Action 16 www.compendiumdev.co.uk

	The Practical Part – The sessions & the tools
	Notes on the Application under test
	Approaching the testing and identifying the tools
	
	TimeScales & Environments

	Install the application
	Session 01 – Cancel Install App Session
	
	�

	Session 02 – Install App Session
	Session 03 – Install App into NT 4.4

	What we learned about the AUT in session One (Parts 1-3):
	Section Two – Now some proper testing \(sessions

	Session 04 – Investigate Startup Routine
	Session 05 – File Locking
	Part Three – Exploring

	Session 06 – Explore Area of Greatest Complexity
	
	Session 07 – Simple environment management & File

	Session 08 - Install Session Based Testing Scripts
	Session 09 – Initial Integration Testing
	Session 10 – Manage Defects and Metric Reporting
	
	Future Sessions - Getting Advanced and other out of scope stuff

